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Synchronization in coupled chaotic oscillators with a no-flux boundary condition
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We investigate the synchronization of coupled chaotic oscillators with a no-flux boundary condition. We find
that the spectrum of the coupling matrix is divided into two parts, the isolated part with a zero eigenvalue and
the continuous one with the othBr-1 eigenvalues falling onto a line. Based on the eigenvalue analysis, the
stability of the synchronization in a coupled Lorenz system is explored thoroughly in the parameter space of
the size of the system, the diffusion, and gradient coupling constants.
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Since Pecora and Carroll's pioneering work in 1990 The synchronous chaos falls onto the synchronous mani-
chaos synchronization has been a hot spot in nonlinear scield and is represented asi;(t)=u,(t)=---=uy(t)=s(t),

ence. Especially, chaos synchronization in coupled chaotiwhere s(t)=f(s(t)). Its stability can be analyzed by setting
oscillators has drawn lots of attention due to the fact that they, =s(t) + 7. By linearizing Eq.(1) at the synchronous chaos
coupled oscillators is a discrete version of a reactionsg(t), we have

diffusion system widely found in physics, chemistry, biology, )

and social society. Numbers of phenomena have been ob- n=[Df(s)l +BI']7, (2
served and different kinds of synchronization, phase synyare Df(s) is the Jacobian of f on s{t), 7

chronization [2,3], generalized synchronizatiop,5], and =(1, s, )T, | is @anNX N unit matrix, andB is anN

pomplete synchronizatiof, 7], _hav_e been classified accord-. X N coupling matrix. Expandingy over the eigenfunctions
ing to the extent of synchronization among the elements i B we get '

systems. In complete synchronization, the stability theories
of the synchronous chaos have been prop¢8ed( and the 8.=[DF()l + N1, (3)
bifurcation of the synchronous chaos has also been studied

thoroughly[11-14. However, most of the work is done on Where§&R" and ) is the eigenvalue of the coupling ma-
periodic boundary condition. Though no-flux boundary con-trix B. Now we have reduced th-site coupled equations
dition is more often seen in real systems, synchronization ifl) to much simpleN independent modified one-site equa-

those systems has not been paid enough atteft®n1g. tions, and then the stability problem of the synchronous
Let us consider a very popu|ar System Nf identical chaos can be analyzed mdimensional space rather than in
coupled nonlinear oscillators with nearest coupling, (N n)-dimensional space.
The significance of Eq.3) is that the stability problem of
U= f(u) + (e~ NI (Ujsy — ) + (e + NI (Uj_y — uy), Egs. (1) can be separated into two independent problems:

one is to analyze the stable regions of Eg), this depends
on the single-site parameters ofiguch as the reference orbit
1=1,2,...,N, (1) s(t), the Jacobia®f(s), and the inner linking matriX], and
) ) ) is independent of the coupling matriand the system size
where u; €R". The functionf is nonlinear and capable of N; the other is to analyze the eigenvalue distribution of the
scalar diffusive and gradient coupling parameter, respeccoyplings, the size of system only, and the boundary condi-
tively, andI" is an nXn constant matrix linking coupled tion, and is independent of the inner dynamlascluding
variables. Generally, there are four situations depending ogt), Df(s), andI']. Both problems can be solved easily and
the type of boundary condition and whether or not thergpe solutions of these two problems can be put together to
exists a gradient coupling terni) a system with periodic  gntirely answer the complicated stability problem of Egs.
boundary conditionPBC) and no gradient coupling term; For each\,, Eq.(3) providesn Lyapunov exponents along
(i) a system with PBC and a gradient coupling teti) &  the synchronous orbi(t). The maximum Lyapunov expo-
system with no-flux boundary conditia?NBC) and no gra-  hant of Eqs(3) is denoted byg. By treating\, as a control-
dient coupling term{iv) a system with NBC and a gradient |5pje parametefwe omit the subscript fon, below), the
coupling term. In this paper, we will use the eigenvalue . itarion that maximum Lyapunov exponent of EEB)
analysis[8,9] to investigate complete synchronization in the ¢y, 511d be negatived< .= 0, provides the stability bound-
latter two cases and compare it with that of the former two.ary for the synchronous orkstt) in the Ré-\)-Im(\) param-

eter plangnote that\ can be complex for asymmetric cou-
plings, r #0). We term the stability boundary as critical

* Author to whom correspondence should be addressed. Electronigurve which divides the complex plane bfinto stable(8
address: jzyang@bupt.edu.cn < 0) and unstable regiong>0) [see the V-shaped curve in
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Figs. 2a) and 3a)]. Once the critical curve is given, the k=0,1,..,N-1. (6)

stability of the synchronous chaos can be determined by ex- _ _ _ .
amining whether eigenvalues of coupling maéenter into ~ The real and imaginary part of the eigenvalues satisfy the
the unstable region in R&\)-Im(-)\) plane. If there are other €lliptic relation and all eigenvalues distribute uniformly on
eigenvalues falling into the unstable region except for onen ellipse, as shown in Fig. 1. Itis clear that the spectrum of
zero eigenvalue, the synchronous ot is unstable with ~ the matrixB is continuous in the limit ofN— . With the
respect to transversal perturbations. number of the oscillators increasing, the density of the eigen-
for PBC and NBC are boundary condition, the eigenvalues of the coupling magrix
are obtained as

—2€¢ e+tr e-r 7k
e-r -2 e+r O ~ —26+2\r'62—r2cos(—), k=1,.,N-1
A= N

Contrary to the PBC case, the system with no-flux boundary
condition does not have the shift-invariant symmetry. How-
ever, if there is no gradient coupling, the system with NBC
and (represented byl,2,...,N}) can be created from a system
with PBC by doubling the size of the PBC systémepre-
—(e+r) e+r sented by(1,2,...,N,N+1,...,2N}) [15,19,20. If we force
€e-I —2€ €+r the N+ 1th oscillator to be the same as tNéh and the Rith
B= (5) equal to the 1st, the doubled system becomes
{1,2,...,N,N,...,2,1 and the dynamics of the firdt oscil-
lators follows the equations described by the coupling matrix
e-r —(e-r) in Eq. (5). Utilizing the shift invariant symmetry in the
doubled system with PBC, the eigenvalues of the coupling
respectively. matrix in Eq.(5) can be obtained ak,=—4e sir(wk/2N),
In the PBC case, the system has a shift-invariant symmek=0,1,...,N-1 [15]. Settingr=0 in Eq.(7), we recover the
try [15] and the eigenvalues of the matri are given in  results in Ref[15]. Unfortunately, the treatment above is not

e+r e-r -2¢

€e-r —2¢ €+r

Refs.[8,9] as applicable to the system with NBC when the gradient cou-
pling is present (r#0). The doubled system
A= 2¢[— 1 + cog27k/N) ] +i2r sin(27k/N), {1,2,...,N,N,...,2,1 does not have a shift-invariant sym-
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metry because the directionality of the gradient couplingandN are controllable during the investigation of the stabil-
makes the conjunctions between the subsystdma,...,N} ity of the synchronous chaos. First, we vary the gradient
and{N, ..., 2,1} be source and sink of the flow. Actually the coupling constant while keepingN and e unchanged. From
absence of the connection between systems with PBC arfdd. (7), we know that the length of the vertical distribution
with NBC when gradient coupling+ 0 is evidenced by the line decreases when increases from 0. Then above- e
formulas in Eqs(6) and(7). To make it clear, we useatlab ~ where the eigenvalue i$N-1)-fold degenerate, the line

to calculate the eigenvalues & directly. The eigenvalue changes its orientation to be horizontal and the length of the
distributions in the Re\)-Im(\) plane for differentr under line increases with. In the PBC case, the only effect ois
PBC and NBC cases are shown in Fig&)41(d) whereN  to desynchronize the system with V-type critical curve. How-
=30 ande=5. From these figures, we find that the distribu-ever, in the case of NBCG; may induce synchronization.
tion of the eigenvalues in the NBC case is quite differentFigure 2 shows the simulation results f8~20 ande=5. In
from the PBC case. First of all, the spectrum of the ma&ix Fig. 2a), we plot eigenvalues for differemtin the Re-\)-

is divided into two parts. One is an isolated part containingim(-\) plane. The distribution line is vertical wher2. We
only A=0 which accounts for the synchronous state, thecan find that some eigenvalues are below the critical curve,
other is a continuous part which includes the otiherl  which indicates that the synchronous chaos is unstable.
eigenvalues. Second, the eigenvalues in the continuous pafthenr increases, the length of the distribution line is short-
for the NBC case fall onto not an ellipse but a lifvee call it  ened and the eigenvalues on the line move toward the mid-
the distribution ling whose orientation is determined by the point so that the number of the eigenvalues below the critical
relative strength ot andr. Whenr <e, the imaginary parts curve decreases. Especially, when4.5, the length of the

of the eigenvalues are zero, the distribution line is on the redine is so short that all eigenvalues in the continuous spec-
axis of the complex\, plane. The situation is unchanged trum enter the stable region. After crossinge=5, the ori-
even when the gradient coupling is extremely small, for ex-entation of the distribution line becomes horizontal. For ex-
ampler/e=0.0002: the eigenvalues for PBC fall onto an ample, whenr=5.5, N-1 eigenvalues are all in the stable
ellipse while those for NBC still onto a ling=ig. 1(a)]. The  region. Further increasing the length of the line becomes
results in Fig. 1) indicate that the connection between alonger and longer. Eventually some eigenvalues enter the
PBC system with doubled size and an NBC system when unstable region again and synchronization is destroyed. Fig-
=0 is rather special, not a universal property. Moreover, foure 2b) shows the first four largest Lyapunov exponents of
r > e, the real parts of the eigenvalues equal tea2d the the coupled system versusWe can find the transitions from
line is parallel to the imaginary axis. For a special case desynchronization to synchronization for smalind the re-

=¢, the continuous part for the NBC case collapses onto aerse process for large, respectively. Synchronization is
single point, that is, the only eigenvalue in the continuousealized wherr is arounde where there is only one positive
part is(N-1)-fold degenerate. Actually,=e with NBC cor-  Lyapunov exponent. Such transitions are also seen in Figs.
responds to a one-way coupled open sysf2fi} where the  2(c)-2(f) where the fluctuations of,

dynamics at the upper stream is independent of other sites
downstream. As a result, the synchronization condition of the D% 2%
whole NBC system is the same as that for a driver-slaver o= —N(N— 1) X = N 9

system[1] whereN=2. However, the dynamics of the one-

way coupled PBC system is controlled by the collective be-are presented for differemt

haviors of all site§22] and the eigenvalues & still distrib- In the following we investigate the effect of on the

ute onto a certain ellipse. synchronization of the system. LBt=14 andr=5, we plot
Now consider a specific system. We choose the Lorenthe eigenvalues for differerton the R¢-\)-Im(-\) plane in

oscillator as the constituent element. The Lorenz oscillator is-ig. 3(a). Several points from Fig.(8) can be drawn(i) For

described by small €, the distribution line is horizontal. Wheaincreases
) from zero, the line is shortened at the same time it moves
x=aly-x away from the imaginary axis. There exists a cerijnbe-
Yy=pX—y-—Xz (8  low which the distribution line does not intersect the critical

curve and the synchronization is not possible whate\isr
Whene is larger tharg,, so that the synchronization could be
whereo=10 andp=28. Under these parameters the dynam-realized by varying according to the discussion aboy#)

Z=Xy-2,

ics of the single oscillator is chaotic. For the choice of For intermediatee, once another critical value, is passed
the horizontal line shrinks completely into the stable region,
000 the synchronous chaos is stable. Still within this stable re-
r={1 0 0}, gion, the distribution line becomes vertical after collapsing
000 onto one point.(iii) A third critical diffusion couplinge,

could be found, above which the length of the line becomes
the critical curve in they, complex plane is of “V” shape as long enough that its lower part moves down across the criti-
the solid line shown in Fig.(@). The necessary and sufficient cal curve. The existence @b signals the desynchronization
condition for synchronization is that all the nonzero eigen-of the system(iv) From Eq.(7), we know thate not only
values of the matrixB locate above the critical curve, r, changes the length of the distribution line but also changes
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the location of the midpoint of the line. The competition

numerical result for the relation of and N whenr=0 is

between these two effects determines how the lowest eigeishown in Fig. 4c) which is in great agreement with EG.0).

value moves along the line. Actually we find a diffusion
coupling constant.=r/sin(ksr/N) to be a turning point: the
lowest eigenvalue on the line moves downward when
< ¢, otherwise it moves upward. As a result, for larga
fourth critical e5 could be found, beyond which the distribu-

tion line moves back into the stable region and the synchro

nization is restored again. In Fig(t8, we show the four
largest Lyapunov exponents verseisTwo stable regions of
the synchronous chaos are found. We also plot the time ev
lutions of o in different parameter regimegsee Figs.
3(c)-3(h)]. The size effect on the synchronization is promi-
nent in systems with PBC. If synchronization is realized for
a system with a givel, it will break down when the size of
the system increases above a certain valgeThe explana-
tion is given in Ref[9]. Actually, for a V-type critical curve
the synchronization requirement efandN for r=0 is

A" (0)]

e(r=0) > (10

-1+ cos{%)]

where\"(0) can be read from the critical curve shown in Fig.
2(a) [23]. Similar results can be obtained for=0. The

However, the situation is quite different for the NBC case.
We show the simulation results in Fig(a# for r #0. For
smallN, the situation is similar to the PBC case; there exists
only one criticale above which the synchronization is stable.
However, wherN is increased beyond a certain vaNg an
unstable region bursts out of the synchronization region from
(N*,€)=(2m/arcsin\"(0)/2r|,2r2/|\"(0)]). The transitions
between synchronization and desynchronization shown in

d:_ig. 3 are clear in Fig. @ whenN is large. Up to this point,

we have discussed the size effect on the synchronization.
However, the phase diagram in thiee plane shown in Fig.
4(a) is different from that for the PBC case. Scrutinized in
the stable region at smadl but largeN, the boundary sepa-
rating it from the desynchronization region is not sensitive to
N [for example, see Fig.(8)]. The fact that the eigenvalue is
(N-1)-fold degenerate at=r hints that it is possible to find

a regime where the stability of the synchronous chaos is
independent olN. Such a regime in the-r plane can be
obtained by\r?—|\"(—2¢)|?/4<e<(|\"(0)[>+4r?)/4\" (0)]

for r=|\"(0)/2|.

In summary, we have investigated the synchronization of
coupled chaotic oscillators with no-flux boundary condition.
We have found that the spectrum of the coupling matrix is
divided into two parts, the isolated part with a zero eigen-
value and the continuous part with the oti\er 1 eigenval-
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tions for variouse. To see clearly, we shift the eigenvalues in the Curve are presented. Though our numerical discussion is
same way as Fig. 2. The solid line represents the critical cgbye. Mmade on a specific system, the results obtained in this paper
The four largest Lyapunov exponents versus diffusive coupling pacan be extended to other systems. Since no-flux boundary
rametere. (c)—«(h) The evolution of the fluctuation for various (c) condition is prevailing in natural systems such as the chemi-
€=3; (d) €=4.5;(e) e=5; (f) €=5.5;(e) e=30; (h) e=60. cal reaction system, it is interesting to investigate the dy-

] o ] S ~ namical behavior caused by the peculiar property of the
ues falling onto a distribution line. The distribution line gpectrum. The work along this line is still to be done.
changes its orientation when diffusion coupliagrosses the
gradient coupling. The midpoint of the distribution line is This work was supported by Grant No. 10172020 from
determined by the diffusion coupling while the width of the the Chinese Natural Science Foundation.
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