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We investigate the synchronization of coupled chaotic oscillators with a no-flux boundary condition. We find
that the spectrum of the coupling matrix is divided into two parts, the isolated part with a zero eigenvalue and
the continuous one with the otherN−1 eigenvalues falling onto a line. Based on the eigenvalue analysis, the
stability of the synchronization in a coupled Lorenz system is explored thoroughly in the parameter space of
the size of the system, the diffusion, and gradient coupling constants.
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Since Pecora and Carroll’s pioneering work in 1990[1],
chaos synchronization has been a hot spot in nonlinear sci-
ence. Especially, chaos synchronization in coupled chaotic
oscillators has drawn lots of attention due to the fact that the
coupled oscillators is a discrete version of a reaction-
diffusion system widely found in physics, chemistry, biology,
and social society. Numbers of phenomena have been ob-
served and different kinds of synchronization, phase syn-
chronization [2,3], generalized synchronization[4,5], and
complete synchronization[6,7], have been classified accord-
ing to the extent of synchronization among the elements in
systems. In complete synchronization, the stability theories
of the synchronous chaos have been proposed[8–10] and the
bifurcation of the synchronous chaos has also been studied
thoroughly[11–14]. However, most of the work is done on
periodic boundary condition. Though no-flux boundary con-
dition is more often seen in real systems, synchronization in
those systems has not been paid enough attention[15–18].

Let us consider a very popular system ofN identical
coupled nonlinear oscillators with nearest coupling,

u̇j = fsujd + se − rdGsuj+1 − ujd + se + rdGsuj−1 − ujd,

j = 1,2,…,N, s1d

where uj [Rn. The function f is nonlinear and capable of
exhibiting chaotic solution,e and r are the dimensionless
scalar diffusive and gradient coupling parameter, respec-
tively, and G is an n3n constant matrix linking coupled
variables. Generally, there are four situations depending on
the type of boundary condition and whether or not there
exists a gradient coupling term:(i) a system with periodic
boundary condition(PBC) and no gradient coupling term;
(ii ) a system with PBC and a gradient coupling term;(iii ) a
system with no-flux boundary condition(NBC) and no gra-
dient coupling term;(iv) a system with NBC and a gradient
coupling term. In this paper, we will use the eigenvalue
analysis[8,9] to investigate complete synchronization in the
latter two cases and compare it with that of the former two.

The synchronous chaos falls onto the synchronous mani-
fold and is represented asu1std=u2std=¯=uNstd=sstd,
where ṡstd= f(sstd). Its stability can be analyzed by setting
uj =sstd+h j. By linearizing Eq.(1) at the synchronous chaos
sstd, we have

ḣ = fDfssdI + BGgh, s2d

where Dfssd is the Jacobian of f on sstd, h
=sh1,h2,… ,hNdT, I is anN3N unit matrix, andB is anN
3N coupling matrix. Expandingh over the eigenfunctions
of B, we get

ḋk = fDfssdI + lkGgdk, s3d

wheredk[Rn andlk is the eigenvalue of the coupling ma-
trix B. Now we have reduced theN-site coupled equations
(1) to much simplerN independent modified one-site equa-
tions, and then the stability problem of the synchronous
chaos can be analyzed inn-dimensional space rather than in
sN3nd-dimensional space.

The significance of Eq.(3) is that the stability problem of
Eqs. (1) can be separated into two independent problems:
one is to analyze the stable regions of Eq.(3), this depends
on the single-site parameters only[such as the reference orbit
sstd, the JacobianDfssd, and the inner linking matrixG], and
is independent of the coupling matrixB and the system size
N; the other is to analyze the eigenvalue distribution of the
coupling matrixB, that depends on the diffusive and gradient
couplings, the size of system only, and the boundary condi-
tion, and is independent of the inner dynamics[including
sstd, Dfssd, andG]. Both problems can be solved easily and
the solutions of these two problems can be put together to
entirely answer the complicated stability problem of Eqs.(1).

For eachlk, Eq.(3) providesn Lyapunov exponents along
the synchronous orbitsstd. The maximum Lyapunov expo-
nent of Eqs.(3) is denoted byb. By treatinglk as a control-
lable parameter(we omit the subscript forlk below), the
criterion that maximum Lyapunov exponent of Eq.(3)
should be negative,b,bc;0, provides the stability bound-
ary for the synchronous orbitsstd in the Res-ld-Imsld param-
eter plane(note thatl can be complex for asymmetric cou-
plings, r Þ0). We term the stability boundary as critical
curve which divides the complex plane ofl into stablesb
,0d and unstable regionssb.0d [see the V-shaped curve in
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Figs. 2(a) and 3(a)]. Once the critical curve is given, the
stability of the synchronous chaos can be determined by ex-
amining whether eigenvalues of coupling matrixB enter into
the unstable region in Res-ld-Ims-ld plane. If there are other
eigenvalues falling into the unstable region except for one
zero eigenvalue, the synchronous orbitsstd is unstable with
respect to transversal perturbations.

In the nearest coupling scheme, the coupling matricesB
for PBC and NBC are

B =1
− 2e e + r e − r

e − r − 2e e + r 0

… … …
e − r − 2e e + r

e + r e − r − 2e
2 s4d

and

B =1
− se + rd e + r

e − r − 2e e + r

… … …
e − r − 2e e + r

e − r − se − rd
2 , s5d

respectively.
In the PBC case, the system has a shift-invariant symme-

try [15] and the eigenvalues of the matrixB are given in
Refs.[8,9] as

lk = 2ef− 1 + coss2pk/Ndg + i2r sins2pk/Nd,

k = 0,1,…,N − 1. s6d

The real and imaginary part of the eigenvalues satisfy the
elliptic relation and all eigenvalues distribute uniformly on
an ellipse, as shown in Fig. 1. It is clear that the spectrum of
the matrixB is continuous in the limit ofN→`. With the
number of the oscillators increasing, the density of the eigen-
values on the ellipse increases linearly. For the no-flux
boundary condition, the eigenvalues of the coupling matrixB
are obtained as

lk = 5− 2e + 2Îe2 − r2 cosSpk

N
D , k = 1,…,N − 1

0, k = 0.

s7d

Contrary to the PBC case, the system with no-flux boundary
condition does not have the shift-invariant symmetry. How-
ever, if there is no gradient coupling, the system with NBC
(represented byh1,2,… ,Nj) can be created from a system
with PBC by doubling the size of the PBC system(repre-
sented byh1,2,… ,N,N+1,… ,2Nj) [15,19,20]. If we force
the N+1th oscillator to be the same as theNth and the 2Nth
equal to the 1st, the doubled system becomes
h1,2,… ,N,N,… ,2 ,1j and the dynamics of the firstN oscil-
lators follows the equations described by the coupling matrix
in Eq. (5). Utilizing the shift invariant symmetry in the
doubled system with PBC, the eigenvalues of the coupling
matrix in Eq. (5) can be obtained aslk=−4e sin2spk/2Nd,
k=0,1,… ,N−1 [15]. Settingr =0 in Eq.(7), we recover the
results in Ref.[15]. Unfortunately, the treatment above is not
applicable to the system with NBC when the gradient cou-
pling is present sr Þ0d. The doubled system
h1,2,… ,N,N,… ,2 ,1j does not have a shift-invariant sym-

FIG. 1. (Color online) The ei-
genvalue distributions of coupling
matrices for PBC(open squares)
and NBC (open circles) systems,
N=30. (a) e=5, r =0.001se. rd;
(b) e=5, r =3 se. rd; (c) e=r =5;
(d) e=5, r =7 se, rd.
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metry because the directionality of the gradient coupling
makes the conjunctions between the subsystemsh1,2,… ,Nj
andhN,… ,2 ,1j be source and sink of the flow. Actually the
absence of the connection between systems with PBC and
with NBC when gradient couplingr Þ0 is evidenced by the
formulas in Eqs.(6) and(7). To make it clear, we useMatlab

to calculate the eigenvalues ofB directly. The eigenvalue
distributions in the Res-ld-Imsld plane for differentr under
PBC and NBC cases are shown in Figs. 1(a)–1(d) whereN
=30 ande=5. From these figures, we find that the distribu-
tion of the eigenvalues in the NBC case is quite different
from the PBC case. First of all, the spectrum of the matrixB
is divided into two parts. One is an isolated part containing
only l=0 which accounts for the synchronous state, the
other is a continuous part which includes the otherN−1
eigenvalues. Second, the eigenvalues in the continuous part
for the NBC case fall onto not an ellipse but a line(we call it
the distribution line) whose orientation is determined by the
relative strength ofe andr. Whenr ,e, the imaginary parts
of the eigenvalues are zero, the distribution line is on the real
axis of the complexlk plane. The situation is unchanged
even when the gradient coupling is extremely small, for ex-
ample r /e=0.0002: the eigenvalues for PBC fall onto an
ellipse while those for NBC still onto a line[Fig. 1(a)]. The
results in Fig. 1(a) indicate that the connection between a
PBC system with doubled size and an NBC system whenr
=0 is rather special, not a universal property. Moreover, for
r .e, the real parts of the eigenvalues equal to −2e and the
line is parallel to the imaginary axis. For a special caser
=e, the continuous part for the NBC case collapses onto a
single point, that is, the only eigenvalue in the continuous
part issN−1d-fold degenerate. Actually,r =e with NBC cor-
responds to a one-way coupled open system[21] where the
dynamics at the upper stream is independent of other sites
downstream. As a result, the synchronization condition of the
whole NBC system is the same as that for a driver-slaver
system[1] whereN=2. However, the dynamics of the one-
way coupled PBC system is controlled by the collective be-
haviors of all sites[22] and the eigenvalues ofB still distrib-
ute onto a certain ellipse.

Now consider a specific system. We choose the Lorenz
oscillator as the constituent element. The Lorenz oscillator is
described by

5ẋ = ssy − xd
ẏ = rx − y − xz

ż= xy− z,

s8d

wheres=10 andr=28. Under these parameters the dynam-
ics of the single oscillator is chaotic. For the choice of

G = 10 0 0

1 0 0

0 0 0
2 ,

the critical curve in thelk complex plane is of “V” shape as
the solid line shown in Fig. 2(a). The necessary and sufficient
condition for synchronization is that all the nonzero eigen-
values of the matrixB locate above the critical curve.e, r,

andN are controllable during the investigation of the stabil-
ity of the synchronous chaos. First, we vary the gradient
coupling constantr while keepingN ande unchanged. From
Eq. (7), we know that the length of the vertical distribution
line decreases whenr increases from 0. Then abover =e
where the eigenvalue issN−1d-fold degenerate, the line
changes its orientation to be horizontal and the length of the
line increases withr. In the PBC case, the only effect ofr is
to desynchronize the system with V-type critical curve. How-
ever, in the case of NBC,r may induce synchronization.
Figure 2 shows the simulation results forN=20 ande=5. In
Fig. 2(a), we plot eigenvalues for differentr in the Res-ld-
Ims-ld plane. The distribution line is vertical whenr =2. We
can find that some eigenvalues are below the critical curve,
which indicates that the synchronous chaos is unstable.
Whenr increases, the length of the distribution line is short-
ened and the eigenvalues on the line move toward the mid-
point so that the number of the eigenvalues below the critical
curve decreases. Especially, whenr =4.5, the length of the
line is so short that all eigenvalues in the continuous spec-
trum enter the stable region. After crossingr =e=5, the ori-
entation of the distribution line becomes horizontal. For ex-
ample, whenr =5.5, N−1 eigenvalues are all in the stable
region. Further increasingr, the length of the line becomes
longer and longer. Eventually some eigenvalues enter the
unstable region again and synchronization is destroyed. Fig-
ure 2(b) shows the first four largest Lyapunov exponents of
the coupled system versusr. We can find the transitions from
desynchronization to synchronization for smallr and the re-
verse process for larger, respectively. Synchronization is
realized whenr is arounde where there is only one positive
Lyapunov exponent. Such transitions are also seen in Figs.
2(c)–2(f) where the fluctuations ofx,

s =Îo sxi − xid2

NsN − 1d
, xi =

o xi

N
, s9d

are presented for differentr.
In the following we investigate the effect ofe on the

synchronization of the system. LetN=14 andr =5, we plot
the eigenvalues for differente on the Res-ld-Ims-ld plane in
Fig. 3(a). Several points from Fig. 3(a) can be drawn:(i) For
small e, the distribution line is horizontal. Whene increases
from zero, the line is shortened at the same time it moves
away from the imaginary axis. There exists a certaine0, be-
low which the distribution line does not intersect the critical
curve and the synchronization is not possible whateverr is.
Whene is larger thane0, so that the synchronization could be
realized by varyingr according to the discussion above.(ii )
For intermediatee, once another critical valuee1 is passed
the horizontal line shrinks completely into the stable region,
the synchronous chaos is stable. Still within this stable re-
gion, the distribution line becomes vertical after collapsing
onto one point.(iii ) A third critical diffusion couplinge2
could be found, above which the length of the line becomes
long enough that its lower part moves down across the criti-
cal curve. The existence ofe2 signals the desynchronization
of the system.(iv) From Eq.(7), we know thate not only
changes the length of the distribution line but also changes
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the location of the midpoint of the line. The competition
between these two effects determines how the lowest eigen-
value moves along the line. Actually we find a diffusion
coupling constantec=r /sinskp /Nd to be a turning point: the
lowest eigenvalue on the line moves downward whene
,ec, otherwise it moves upward. As a result, for largee a
fourth critical e3 could be found, beyond which the distribu-
tion line moves back into the stable region and the synchro-
nization is restored again. In Fig. 3(b), we show the four
largest Lyapunov exponents versuse. Two stable regions of
the synchronous chaos are found. We also plot the time evo-
lutions of s in different parameter regimes[see Figs.
3(c)–3(h)]. The size effect on the synchronization is promi-
nent in systems with PBC. If synchronization is realized for
a system with a givenN, it will break down when the size of
the system increases above a certain valueNc. The explana-
tion is given in Ref.[9]. Actually, for a V-type critical curve
the synchronization requirement ofe andN for r =0 is

esr = 0d .
ul*s0du

2f− 1 + coss
2p

N
dg

, s10d

wherel*s0d can be read from the critical curve shown in Fig.
2(a) [23]. Similar results can be obtained forr Þ0. The

numerical result for the relation ofe and N when r =0 is
shown in Fig. 4(c) which is in great agreement with Eq.(10).
However, the situation is quite different for the NBC case.
We show the simulation results in Fig. 4(a) for r Þ0. For
smallN, the situation is similar to the PBC case; there exists
only one criticale above which the synchronization is stable.
However, whenN is increased beyond a certain valueN* , an
unstable region bursts out of the synchronization region from
sN* ,e*d=s2p /arcsinul*s0d /2r u ,2r2/ ul*s0dud. The transitions
between synchronization and desynchronization shown in
Fig. 3 are clear in Fig. 4(a) whenN is large. Up to this point,
we have discussed the size effect on the synchronization.
However, the phase diagram in theN-e plane shown in Fig.
4(a) is different from that for the PBC case. Scrutinized in
the stable region at smalle but largeN, the boundary sepa-
rating it from the desynchronization region is not sensitive to
N [for example, see Fig. 4(b)]. The fact that the eigenvalue is
sN−1d-fold degenerate ate=r hints that it is possible to find
a regime where the stability of the synchronous chaos is
independent ofN. Such a regime in thee-r plane can be
obtained byÎr2− ul*s−2edu2/4øeø sul*s0du2+4r2d /4ul*s0du
for r ù ul*s0d /2u.

In summary, we have investigated the synchronization of
coupled chaotic oscillators with no-flux boundary condition.
We have found that the spectrum of the coupling matrix is
divided into two parts, the isolated part with a zero eigen-
value and the continuous part with the otherN−1 eigenval-

FIG. 2. (Color online) N=20
and e=5. (a) The eigenvalue dis-
tributions for variousr. To make
the picture clear, we shift the ei-
genvalues for the samer, for ex-
ample, we move the eigenvalues
upward by two units. The solid
line is the critical curve which di-
vides Res-ld-Imsld parameter
plane into stable(“S” ) and un-
stable regions(“U” ). (b) The four
largest Lyapunov exponents vs the
gradient coupling parameterr.
(c)–(f) The evolution of the fluc-
tuation defined in Eq.(9) for vari-
ous r: (c) r =2; (d) r =4.5; (e) r
=5; (f) r =8.
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ues falling onto a distribution line. The distribution line
changes its orientation when diffusion couplinge crosses the
gradient couplingr. The midpoint of the distribution line is
determined by the diffusion coupling while the width of the

line is dependent of the size of the system, the diffusion, and
gradient coupling constant. Based on the eigenvalue analysis,
the parameter spaceN-r-e is explored. Numerical experi-
ments on the coupled Lorenz systems with V-type critical
curve are presented. Though our numerical discussion is
made on a specific system, the results obtained in this paper
can be extended to other systems. Since no-flux boundary
condition is prevailing in natural systems such as the chemi-
cal reaction system, it is interesting to investigate the dy-
namical behavior caused by the peculiar property of the
spectrum. The work along this line is still to be done.
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FIG. 3. (Color online) N=14, r =5. (a) The eigenvalue distribu-
tions for variouse. To see clearly, we shift the eigenvalues in the
same way as Fig. 2. The solid line represents the critical curve.(b)
The four largest Lyapunov exponents versus diffusive coupling pa-
rametere. (c)–(h) The evolution of the fluctuation for variouse: (c)
e=3; (d) e=4.5; (e) e=5; (f) e=5.5; (e) e=30; (h) e=60.

FIG. 4. (Color online) The phase diagram in theN-e plane
where the regime denoted by “N”(“S” ) means desynchronization
(synchronization). (a) The system with no-flux boundary condition.
A new desynchronization region is born at(N* , e*). (b) The en-
larged plot of(a) wheree,50. (c) The system with the periodic
boundary condition.

SYNCHRONIZATION IN COUPLED CHAOTIC… PHYSICAL REVIEW E 70, 066211(2004)

066211-5


